Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810787

RESUMO

Background: As a member of the immunoglobulin superfamily, hemolins play a vital role in insect development and defense against pathogens. However, the innate immune response of hemolin to baculovirus infection varies among different insects. Methods and results: In this study, the hemolin-like gene from a Crambidae insect, Cnaphalocrocis medinalis, CmHem was cloned, and its role in insect development and baculovirus infection was analyzed. A 1,528 bp contig as potential hemolin-like gene of C. medinalis was reassembled from the transcriptome. Further, the complete hemolin sequence of C. medinalis (CmHem) was cloned and sequenced. The cDNA of CmHem was 1,515 bp in length and encoded 408 amino acids. The deduced amino acid of CmHem has relatively low identities (41.9-62.3%) to various insect hemolins. However, it contains four Ig domains similarity to other insect hemolins. The expression level of CmHem was the highest in eggs, followed by pupae and adults, and maintained a low expression level at larval stage. The synthesized siRNAs were injected into mature larvae, and the CmHem transcription decreased by 51.7%. Moreover, the abdominal somites of larvae became straightened, could not pupate normally, and then died. Infection with a baculovirus, C. medinalis granulovirus (CnmeGV), the expression levels of CmHem in the midgut and fat body of C. medinalis significantly increased at 12 and 24 h, respectively, and then soon returned to normal levels. Conclusions: Our results suggested that hemolin may be related to the metamorphosis of C. medinalis. Exposure to baculovirus induced the phased expression of hemolin gene in the midgut and fat body of C. medinalis, indicated that hemolin involved in the immune recognition of Crambidae insects to baculovirus.


Assuntos
Granulovirus , Mariposas , Animais , Granulovirus/genética , Sequência de Aminoácidos , Imunoglobulinas/química , Mariposas/genética , Larva/genética , Baculoviridae/genética
2.
Mol Phylogenet Evol ; 182: 107745, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842732

RESUMO

Baculoviruses are capable to acquire insect host transposable elements (TEs) in their genomes and are hypothesized as possible vectors of insect transposons between Lepidopteran species. Here, we investigated the host origin of two TEs, namely the Tc1/mariner-like element TCp3.2 and a 0.7 kbp insertion sequence (IS07), found in the genome of different isolates of Cydia pomonella granulovirus (CpGV), a member of the Betabaculovirus genus. The sequences of both TEs were searched for in the full genome sequence database of codling moth (CM, Cydia pomonella L.). A total of eleven TCp3.2 TE copies and 76 copies of the IS07 fragments were identified in the CM genome. These TEs were distributed over the 22 autosomes and the Z chromosome (chr1) of CM, except chr6, chr12, chr16, chr23, chr27 and the W chromosome (chr29). TCp3.2 copies with two transposase genes in opposite direction, representing a novel feature, were identified on chr10 and chr18. The TCp3.2 transposase was characterized by DD41D motif of classic Tc1/mariner transposons, consisting of DNA-binding domain, catalytic domain and nuclear localization signal (NLS). Transcription analyses of uninfected and CpGV-infected CM larvae suggested a doubling of the TCp3.2 transposase transcription rate in virus infected larvae. Furthermore, IS07 insertion into the CpGV genome apparently added new transcription initiation sites to the viral genome. The global analysis of the distribution of two TEs in the genome of CM addressed the influx of mobile TEs from CM to CpGV, a genetic process that contributes to the population diversity of baculoviruses.


Assuntos
Granulovirus , Mariposas , Animais , Mariposas/genética , Granulovirus/genética , Elementos de DNA Transponíveis , Filogenia , Transposases/genética
3.
Mol Biotechnol ; 65(3): 433-440, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35980593

RESUMO

One of the most important factor that affects the efficient using of baculoviruses as a biopesticide is their sensitivity to UV irradiation. In this study, a photolyase gene (phr) of 1.4 kbp DNA fragment was cloned and characterized from Spodoptera littoralis granulovirus, an Egyptian isolate (SpliGV-EG1). A sequence of 466 amino acid were deduced when the gene was completely sequenced with a predicted molecular mass of ~ 55 kDa. Transcriptional regulation analyses revealed that phr transcripts were detected early at 6-h post-infection (hpi) and remained detectable until 72 hpi, suggesting their transcriptional regulation from a putative early promoter motif. An approximately ~ 55 kDa protein fragment was expressed from phr-induced bacterial culture and detected by SDS-PAGE and western blotting. In addition, direct exposure to UV irradiation resulted in a twofold decrease in SpliGV-EG1 occlusion bodies activation compared with Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) occlusion bodies which decreased with about 129-fold after exposure to UV irradiation based on median lethal concentration value (LC50). The obtained results suggested that the presence of photolyase gene possibly alters the inactivation of SpliGV-EG1-occluded bodies by UV irradiation. These results support the role and application of the photolyase protein to improve the damaged DNA repair mechanism as well as resistance of SpliGV to UV light inactivation.


Assuntos
Desoxirribodipirimidina Fotoliase , Granulovirus , Animais , Granulovirus/genética , Desoxirribodipirimidina Fotoliase/genética , Spodoptera/genética , Baculoviridae/genética , Regiões Promotoras Genéticas
4.
Virus Res ; 322: 198946, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36179968

RESUMO

The complete genome of Psilogramma increta granulovirus (PsinGV), isolated from P. increta (Lepidoptera: Sphingidae), was ultra-deep sequenced with a Novaseq PE150 platform and de novo assembled and annotated. The PsinGV genome is a circular double-stranded DNA, 103,721 bp in length, with a G+C content of 33.0%, the third lowest G+C content in present sequenced baculoviruses. It encodes 123 putative open reading frames, including 38 baculovirus core genes, 42 lepidopteran baculovirus conserved genes, 38 betabaculovirus conserved genes, and 5 genes unique to PsinGV. Meanwhile, 3 homologous repeated regions with the core sequence TTGCAA and 3 direct repeated sequences were identified within the PsinGV genome. Kimura two-parameters distance analysis confirmed that Psilogramma increta granulovirus is a representative of a prospective new species of the genus Betabaculovirus. Phylogenetic analysis based on the baculovirus core genes showed that PsinGV is closely related to Choristoneura fumiferana granulovirus, Clostera anastomosis granulovirus-B, and Erinnyis ello granulovirus. These four species therefore share a common ancestor residing in the Betabaculovirus genus. The genome of the PsinGV isolate contained two p10 copies: p10 and p10-2. Phylogenetic reconstruction of P10 suggests a transfer event of the p10-2 gene from an alphabaculovirus to the aforementioned common ancestor. Analysis of genomic diversity showed that 203 intrahost variants, including 182 single nucleotide variants and 21 short insertions/deletions, are present within the PsinGV isolate. Meanwhile, allele frequency indicated that the isolate contains three major genotypes, implying the archived isolate consists of several P. increta carcasses killed by PsinGV with different genotypes.


Assuntos
Granulovirus , Mariposas , Animais , Granulovirus/genética , Filogenia , Genoma Viral , Baculoviridae , Fases de Leitura Aberta
5.
PLoS Genet ; 18(2): e1010037, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35113858

RESUMO

The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to their sustainable utilization. Previously, we have demonstrated that the down-regulation of PxmALP in a strain of Plutella xylostella (L.) highly resistant to the Bt Cry1Ac toxin was due to a hormone-activated MAPK signaling pathway and contributed to the resistance phenotype. However, the underlying transcriptional regulatory mechanism remains enigmatic. Here, we report that the PxGATAd transcription factor (TF) is responsible for the differential expression of PxmALP observed between the Cry1Ac susceptible and resistant strains. We identified that PxGATAd directly activates PxmALP expression via interacting with a non-canonical but specific GATA-like cis-response element (CRE) located in the PxmALP promoter region. A six-nucleotide insertion mutation in this cis-acting element of the PxmALP promoter from the resistant strain resulted in repression of transcriptional activity, affecting the regulatory performance of PxGATAd. Furthermore, silencing of PxGATAd in susceptible larvae reduced the expression of PxmALP and susceptibility to Cry1Ac toxin. Suppressing PxMAP4K4 expression in the resistant larvae transiently recovered both the expression of PxGATAd and PxmALP, indicating that the PxGATAd is a positive responsive factor involved in the activation of PxmALP promoter and negatively regulated by the MAPK signaling pathway. Overall, this study deciphers an intricate regulatory mechanism of PxmALP gene expression and highlights the concurrent involvement of both trans-regulatory factors and cis-acting elements in Cry1Ac resistance development in lepidopteran insects.


Assuntos
Toxinas de Bacillus thuringiensis/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Resistência a Inseticidas/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/farmacologia , Proteínas de Bactérias/genética , Endotoxinas/farmacologia , Granulovirus/genética , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/genética , Inseticidas/metabolismo , Larva/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mariposas/genética , Mariposas/metabolismo , Fatores de Transcrição/genética
6.
Viruses ; 13(12)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960789

RESUMO

Spodoptera ornithogalli (Guenée) (Lepidoptera: Noctuidae) is an important pest in different crops of economic relevance in America. For its control, strategies that include chemicals are usually used; so, the description of entomopathogens would be very useful for the formulation of biopesticides. In this regard, two different baculoviruses affecting S. ornithogalli were isolated in Colombia, with one of them being an NPV and the other a GV. Ultrastructural, molecular, and biological characterization showed that both isolates possess the 38 core genes and are novel species in Baculoviridae, named as Spodoptera ornithogalli nucleopolyhedrovirus (SporNPV) and Spodoptera ornithogalli granulovirus (SporGV). The bioassays carried out in larvae of S. ornithogalli and S. frugiperda showed infectivity in both hosts but being higher in the first. In addition, it was observed that SporGV potentiates the insecticidal action of SporNPV (maximum value in ratio 2.5:97.5). Both viruses are individually infective but coexist in nature, producing mixed infections with a synergistic effect that improves the performance of the NPV and enables the transmission of the GV, which presents a slowly killing phenotype.


Assuntos
Baculoviridae , Coinfecção/virologia , Larva/virologia , Spodoptera/virologia , Animais , Baculoviridae/genética , Agentes de Controle Biológico , Colômbia , Modelos Animais de Doenças , Granulovirus/classificação , Granulovirus/genética , Inseticidas , Mariposas/virologia , Nucleopoliedrovírus , Controle Biológico de Vetores , Filogenia
7.
Viruses ; 13(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34578277

RESUMO

The genetic diversity of baculoviruses provides a sustainable agronomic solution when resistance to biopesticides seems to be on the rise. This genetic diversity promotes insect infection by several genotypes (i.e., multiple infections) that are more likely to kill the host. However, the mechanism and regulation of these virus interactions are still poorly understood. In this article, we focused on baculoviruses infecting the codling moth, Cydia pomonella: two Cydia pomonella granulovirus genotypes, CpGV-M and CpGV-R5, and Cryptophlebia peltastica nucleopolyhedrovirus (CrpeNPV). The influence of the order of ingestion of the virus genotypes, the existence of an ingestion delay between the genotypes and the specificity of each genotype involved in the success of multiple infection were studied in the case of Cydia pomonella resistance. To obtain a multiple infection in resistant insects, the order of ingestion is a key factor, but the delay for ingestion of the second virus is not. CrpeNPV cannot substitute CpGV-R5 to allow replication of CpGV-M.


Assuntos
Comportamento Alimentar , Granulovirus/genética , Granulovirus/fisiologia , Vírus Auxiliares/fisiologia , Mariposas/virologia , Replicação Viral , Animais , Variação Genética , Vírus Auxiliares/genética
8.
Viruses ; 13(7)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202228

RESUMO

Enhancins are metalloproteinases that facilitate baculovirus infection in the insect midgut. They are more prevalent in granuloviruses (GVs), constituting up to 5% of the proteins of viral occlusion bodies (OBs). In nucleopolyhedroviruses (NPVs), in contrast, they are present in the envelope of the occlusion-derived virions (ODV). In the present study, we constructed a recombinant Autographa californica NPV (AcMNPV) that expressed the Trichoplusia ni GV (TnGV) enhancin 3 (En3), with the aim of increasing the presence of enhancin in the OBs or ODVs. En3 was successfully produced but did not localize to the OBs or the ODVs and accumulated in the soluble fraction of infected cells. As a result, increased OB pathogenicity was observed when OBs were administered in mixtures with the soluble fraction of infected cells. The mixture of OBs and the soluble fraction of Sf9 cells infected with BacPhEn3 recombinant virus was ~3- and ~4.7-fold more pathogenic than BacPh control OBs in the second and fourth instars of Spodoptera exigua, respectively. In contrast, when purified, recombinant BacPhEn3 OBs were as pathogenic as control BacPh OBs. The expression of En3 in the soluble fraction of insect cells may find applications in the development of virus-based insecticides with increased efficacy.


Assuntos
Vetores Genéticos/genética , Granulovirus/genética , Granulovirus/patogenicidade , Proteínas Virais/genética , Proteínas Virais/metabolismo , Animais , Larva/virologia , Metaloproteases , Mariposas/citologia , Mariposas/virologia , Corpos de Oclusão Virais , Células Sf9 , Spodoptera/virologia
9.
Virology ; 558: 110-118, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33756423

RESUMO

The Cydia pomonella granulovirus (CpGV) has been used as a biological control agent of codling moth (Cydia pomonella), a severe global pest on pome fruit. Despite the economic importance, our knowledge of its molecular biology is still limited and a detailed picture of its gene expression is still missing. Here, we sequenced the transcriptome of codling moth larvae infected with the Mexican isolate CpGV-M and analyzed the expression of viral genes at 12, 48, and 96 h post infection (hpi). The results showed that two genes (p6.9 and pp31/39K) related to DNA binding of virus production, were highly expressed at 48 and 96 hpi. From 48 to 96 hpi, the expression of genes associated with virus replication and dissemination decreased, whereas the expression of genes related to infectious virion production and per os infectivity increased. This study provides a comprehensive view of CpGV gene expression patterns in host larvae.


Assuntos
Perfilação da Expressão Gênica , Granulovirus/genética , Larva/virologia , Mariposas/virologia , Análise de Sequência de RNA/métodos , Transcriptoma , Animais , Genes Virais , Replicação Viral
10.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33625353

RESUMO

The baculovirus Cydia pomonella granulovirus (CpGV) is a biocontrol agent used worldwide against the codling moth (CM), Cydia pomonella L., a severe pest in organic and integrated pome fruit production. Its successful application is increasingly challenged by the occurrence of CM populations resistant to commercial CpGV products. Whereas three types (I-III) of CpGV resistance have been identified, type I resistance compromising the efficacy of CpGV-M, the so-called Mexican isolate of CpGV, is assumed to be the most widely distributed resistance type in Central Europe. Despite the wide use of CpGV products as biocontrol agents, little information is available on gene-expression levels in CM larvae. In this study, the in vivo transcriptome of CpGV-M infecting susceptible (CpS) and resistant (CpRR1) CM larvae was analysed at 24, 48, 72, 96 and 120 hours post infection in the midgut and fat body tissue by using a newly developed microarray covering all ORFs of the CpGV genome. According to their transcript abundance, the CpGV genes were grouped into four temporal clusters to which groups of known and unknown function could be assigned. In addition, sets of genes differentially expressed in the midgut and fat body were found in infected susceptible CpS larvae. For the resistant CpRR1 larvae treated with CpGV-M, viral entry in midgut cells could be confirmed from onset but a significantly reduced gene expression, indicating that type I resistance is associated with a block of viral gene transcription and replication.


Assuntos
Granulovirus/genética , Granulovirus/isolamento & purificação , Mariposas/virologia , Transcriptoma , Animais , Europa (Continente) , Granulovirus/classificação , Granulovirus/fisiologia , Larva/imunologia , Larva/virologia , Mariposas/crescimento & desenvolvimento , Mariposas/imunologia , Doenças das Plantas/parasitologia
11.
Nat Commun ; 12(1): 1002, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579933

RESUMO

The life cycle of Baculoviridae family insect viruses depends on the viral protein kinase, PK-1, to phosphorylate the regulatory protein, p6.9, to induce baculoviral genome release. Here, we report the crystal structure of Cydia pomenella granulovirus PK-1, which, owing to its likely ancestral origin among host cell AGC kinases, exhibits a eukaryotic protein kinase fold. PK-1 occurs as a rigid dimer, where an antiparallel arrangement of the αC helices at the dimer core stabilizes PK-1 in a closed, active conformation. Dimerization is facilitated by C-lobe:C-lobe and N-lobe:N-lobe interactions between protomers, including the domain-swapping of an N-terminal helix that crowns a contiguous ß-sheet formed by the two N-lobes. PK-1 retains a dimeric conformation in solution, which is crucial for catalytic activity. Our studies raise the prospect that parallel, side-to-side dimeric arrangements that lock kinase domains in a catalytically-active conformation could function more broadly as a regulatory mechanism among eukaryotic protein kinases.


Assuntos
Dimerização , Granulovirus/enzimologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Baculoviridae/metabolismo , Cristalografia por Raios X , Granulovirus/genética , Simulação de Dinâmica Molecular , Fosforilação , Conformação Proteica , Proteínas Quinases/genética , Subunidades Proteicas/metabolismo , Proteínas Virais/metabolismo
12.
Sci Rep ; 11(1): 414, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432025

RESUMO

Purified occlusion bodies (OBs) of Mythimna (formerly Pseudaletia) unipuncta (the true armyworm) granulovirus Hawaiian strain (MyunGV-A) were observed, showing typical GV morphological characteristics under scanning and transmission electron microscopy (EM). The genome of MyunGV-A was completely sequenced and analysed. The genome is 176,677 bp in size, with a G+C content of 39.79%. It contains 183 open reading frames (ORFs) encoding 50 or more amino acids with minimal overlap. Comparison of MyunGV-A with TnGV, XcGV, and HearGV genomes revealed extensive sequence similarity and collinearity, and the four genomes contain the same nine homologous regions (hrs) with conserved structures and locations. Three unique genes, 12 baculovirus repeated ORF (bro), 2 helicase, and 3 enhancin genes, were identified. In particular, two repeated genes (ORF39 and 49) are present in the genome, in reverse and complementarily orientations. Twenty-four OB proteins were identified from the putative protein database of MyunGV-A. In addition, MyunGV-A belongs to the Betabaculovirus group and is most closely related to TnGV (99% amino acid identity) according to a phylogenetic tree based on the combined amino acid sequences of 38 core gene contents.


Assuntos
Granulovirus/genética , Mariposas/virologia , Animais , Baculoviridae/genética , Sequência de Bases , Genes Virais , Genoma Viral , Granulovirus/isolamento & purificação , Havaí , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de DNA
13.
PLoS One ; 16(1): e0243143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33444318

RESUMO

In this study, the genomes of three Plutella xylostella granulovirus (PlxyGV) isolates, PlxyGV-W and PlxyGV-Wn from near Wuhan and PlxyGV-B from near Beijing, China were completely sequenced and comparatively analyzed to investigate genetic stability and diversity of PlxyGV. PlxyGV-W, PlxyGV-B and PlxyGV-Wn consist of 100,941bp, 100,972bp and 100,999bp in length with G + C compositions of 40.71-40.73%, respectively, and share nucleotide sequence identities of 99.5-99.8%. The three individual isolates contain 118 putative protein-encoding ORFs in common. PlxyGV-W, PlxyGV-B and PlxyGV-Wn have ten, nineteen and six nonsynonymous intra isolate nucleotide polymorphisms (NPs) in six, fourteen and five ORFs, respectively, including homologs of five DNA replication/late expression factors and two per os infectivity factors. There are seventeen nonsynonymous inter isolate NPs in seven ORFs between PlxyGV-W and PlxyGV-B, seventy three nonsynonymous NPs in forty seven ORFs between PlxyGV-W and PlxyGV-Wn, seventy seven nonsynonymous NPs in forty six ORFs between PlxyGV-B and PlxyGV-Wn. Alignment of the genome sequences of nine PlxyGV isolates sequenced up to date shows that the sequence homogeneity between the genomes are over 99.4%, with the exception of the genome of PlxyGV-SA from South Africa, which shares a sequence identity of 98.6-98.7% with the other ones. No events of gene gain/loss or translocations were observed. These results suggest that PlxyGV genome is fairly stable in nature. In addition, the transcription start sites and polyadenylation sites of thirteen PlxyGV-specific ORFs, conserved in all PlxyGV isolates, were identified by RACE analysis using mRNAs purified from larvae infected by PlxyGV-Wn, proving the PlxyGV-specific ORFs are all genuine genes.


Assuntos
Instabilidade Genômica/genética , Genômica , Geografia , Granulovirus/genética , Granulovirus/isolamento & purificação , Sequência de Aminoácidos , Animais , Sequência de Bases , China , Genoma Viral , Granulovirus/efeitos dos fármacos , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Mutação/genética , Fases de Leitura Aberta/genética , Filogenia , Polimorfismo Genético , Fatores de Tempo , Transcrição Gênica , Proteínas Virais/química , Proteínas Virais/genética
14.
Viruses ; 14(1)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-35062232

RESUMO

Cryptophlebia leucotreta granulovirus-SA (CrleGV-SA) is used as a commercial biopesticide for the false codling moth, Thaumatotibia leucotreta, in citrus and other crops. The virus is sensitive to UV irradiation from sunlight, which reduces its efficacy as a biopesticide in the field. We selected a UV-resistant CrleGV-SA isolate, with more than a thousand-fold improved virulence compared to the wild-type isolate, measured by comparing LC50 values. CrleGV-SA purified from infected T. leucotreta larvae was exposed to UV irradiation under controlled laboratory conditions in a climate chamber mimicking field conditions. Five cycles of UV exposure, followed by propagating the virus that retained infectivity in vivo with re-exposure to UV, were conducted to isolate and select for UV-resistant virus. Serial dilution bioassays were conducted against neonates after each UV exposure cycle. The concentration-responses of the infectious UV-exposed virus populations were compared by probit analysis with those from previous cycles and from the original CrleGV-SA virus population. NGS sequences of CrleGV-SA samples from UV exposure cycle 1 and cycle 5 were compared with the GenBank CrleGV-SA sequence. Changes in the genomes of infective virus from cycles 1 and 5 generated SNPs thought to be responsible for establishing UV tolerance. Additional SNPs, detected only in the cycle 5 sequence, may enhance UV tolerance and improve the virulence of the UV-tolerant population.


Assuntos
Agentes de Controle Biológico , Granulovirus , Mariposas/virologia , Controle Biológico de Vetores , Animais , Genoma Viral , Granulovirus/genética , Granulovirus/efeitos da radiação , Sequenciamento de Nucleotídeos em Larga Escala , Larva/virologia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Raios Ultravioleta
15.
Viruses ; 12(10)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977681

RESUMO

Matsumuraeses phaseoli is a Lepidopteran pest that primarily feeds on numerous species of cultivated legumes, such as Glycine and Phaseolus. It is widely distributed in northeast Asia. A novel granulovirus, designated as Matsumuraeses phaseoli granulovirus (MaphGV), was isolated from pathogenic M. phaseoli larvae that dwell in rolled leaves of Astragalus membranaceus, a Chinese medicinal herb. In this study, using next-generation sequencing, we report the complete genome of MaphGV. MaphGV genome comprises a double-stranded DNA of 116,875 bp, with 37.18% GC content. It has 128 hypothetical open reading frames (ORFs). Among them, 38 are baculovirus core genes, 18 are lepidopteran baculovirus conserved genes, and 5 are unique to Baculoviridae. MaphGV has one baculovirus repeat ORF (bro) and three inhibitors of apoptosis proteins (iap), including a newfound iap-6. We found two atypical baculoviral homologous regions (hrs) and four direct repeats (drs) in the MaphGV genome. Based on phylogenetic analysis, MaphGV belongs to Clade b of Betabaculovirus and is closely related to Cydia pomonellagranulovirus (CpGV) and Cryptophlebia leucotretagranulovirus (CrleGV). This novel baculovirus discovery and sequencing are invaluable in understanding the evolution of baculovirus and MaphGV may be a potential biocontrol agent against the bean ravaging pest.


Assuntos
Genoma Viral , Granulovirus , Lepidópteros/virologia , Controle Biológico de Vetores/métodos , Filogenia , Animais , Astragalus propinquus , Composição de Bases , DNA Viral/genética , Granulovirus/genética , Granulovirus/isolamento & purificação
16.
J Gen Virol ; 101(6): 667-675, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375954

RESUMO

The cassava hornworm Erinnyis ello ello (Lepidoptera: Sphingidae) is an important pest in Brazil. This insect feeds on host plants of several species, especially Manihot esculenta (cassava) and Hevia brasiliensis (rubber tree). Cassava hornworm outbreaks are quite common in Brazil and can cause great impact over crop production. Granulare and polyhedral-shaped occlusion bodies (OBs) were observed in extracts of dead E. ello larvae from rubber-tree plantations by light and scanning electron microscopy (SEM), suggesting a mixed infection. The polyhedral-shaped OB surface revealed indentations that resemble those found in cypovirus polyhedra. After OB nucleic acid extraction followed by cDNA production and Illumina deep-sequencing analysis, the results confirmed for the presence of a putative novel cypovirus that carries ten segments and also a betabaculovirus (Erinnyis ello granulovirus, ErelGV). Phylogenetic analysis of the predicted segment 1-enconded RdRP showed that the new cypovirus isolate is closely related to a member of species Cypovirus 2, which was isolated from Inachis io (Lepidoptera: Nymphalidae). Therefore, we named this new isolate Erinnyis ello cypovirus 2 (ErelCPV-2). Genome in silico analyses showed that ErelCPV-2 segment 8 (S8) has a predicted amino acid identity of 35.82 % to a hypothetical protein of betabaculoviruses. This putative protein has a cGAMP-specific nuclease domain related to the poxvirus immune nucleases (poxins) from the 2',3'-cGAMP-degrading enzyme family.


Assuntos
Coinfecção/genética , Desoxirribonucleases/genética , Granulovirus/genética , Poxviridae/genética , Reoviridae/genética , Animais , Brasil , GMP Cíclico/genética , Genoma Viral/genética , Larva/virologia , Lepidópteros/virologia , Mariposas/virologia , Corpos de Oclusão Virais/genética , Filogenia
17.
Genomics ; 112(1): 459-466, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30898611

RESUMO

The fall webworm (Hyphantria cunea) impacts a wide variety of crops and cultivated broadleaf plant species. The pest is native to North America, was introduced to Europe and has since spread further as far as central Asia. Despite several attempts to control its distribution, the pest continues to spread causing damage all over the world. A naturally occurring baculovirus, Hyphantria cunea granulovirus (HycuGV-Hc1), isolated from the larvae of H. cunea in Turkey appears to have a potential as microbial control agent against this pest. In this report we describe the complete genome sequence and organization of the granulovirus isolate (HycuGV-Hc1) that infects the larval stages and compare it to other baculovirus genomes. The HycuGV-Hc1 genome is a circular double-stranded DNA of 114,825 bp in size with a nucleotide distribution of 39.3% G + C. Bioinformatics analysis predicted 132 putative open reading frames of (ORFs) ≥ 150 nucleotides. There are 24 ORFs with unknown function. Seven homologous repeated regions (hrs) and two bro genes (bro-1 and bro-2) were identified in the genome. Comparison to other baculovirus genomes, HycuGV-Hc1 revealed some differences in gene content and organization. Gene parity plots and phylogenetics confirmed that HycuGV-Hc1 is a Betabaculovirus and is closely related to Plutella xylostella granulovirus. This study expands our knowledge on the genetic variation of HycuGV isolates and provides further novel knowledge on the nature of granuloviruses.


Assuntos
Genoma Viral , Granulovirus/genética , Animais , Composição de Bases , DNA Viral/química , Genes Virais , Granulovirus/classificação , Mariposas/virologia , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA , Turquia
18.
Appl Environ Microbiol ; 86(2)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31676472

RESUMO

Cydia pomonella granulovirus (CpGV) is successfully used worldwide as a biocontrol agent of the codling moth (CM) (Cydia pomonella). The occurrence of CM populations with different modes of resistance against commercial CpGV preparations in Europe, as well as the invasiveness of CM in China, threatening major apple production areas there, requires the development of new control options. Utilizing the naturally occurring genetic diversity of CpGV can improve such control strategies. Here, we report the identification of seven new CpGV isolates that were collected from infected CM larvae in northwest China. Resistance testing using a discriminating CpGV concentration and the determination of the median lethal concentration (LC50) were performed to characterize their levels of virulence against susceptible and resistant CM larvae. The isolates were further screened for the presence of the 2 × 12-bp-repeat insertion in CpGV gene pe38 (open reading frame 24 [ORF24]), which was shown to be the target of type I resistance. It was found that three isolates, CpGV-JQ, -KS1, and -ZY2, could break type I resistance, although delayed mortality was observed in the infection process. All isolates followed the pe38 model of breaking type I resistance, except for CpGV-WW, which harbored the genetic factor but failed to overcome type I resistance. However, CpGV-WW was able to overcome type II and type III resistance. The bioassay results and sequencing data of pe38 support previous findings that pe38 is the major target for type I resistance. The new isolates show some distinct virulence characteristics when infection of different CM strains is considered.IMPORTANCE CpGV is a highly virulent pathogen of the codling moth (CM). It is registered and widely applied as a biocontrol agent in nearly all apple-growing countries worldwide. The emergence of CpGV resistance and the increasing lack of chemical control options require improvements to current control strategies. Natural CpGV isolates, as well as resistance-breaking isolates selected in resistant CM strains, have provided resources for improved resistance-breaking CpGV products. Here, we report novel CpGV isolates collected in China, which have new resistance-breaking capacities and may be an important asset for future application in the biological control of codling moths.


Assuntos
Variação Genética , Granulovirus/fisiologia , Mariposas/virologia , Animais , China , Granulovirus/genética , Granulovirus/patogenicidade , Larva/crescimento & desenvolvimento , Larva/virologia , Mariposas/crescimento & desenvolvimento , Controle Biológico de Vetores , Virulência
19.
Virology ; 541: 32-40, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826844

RESUMO

The co-evolution between baculoviruses and their insect hosts results in selection of virus populations. To explore this phenomenon at the molecular level, seven natural isolates of Cydia pomonella granulovirus (CpGV) collected from orchards in northwest China were studied using Illumina next generation sequencing (NGS). A total of 540 genome positions with single nucleotide polymorphisms (SNPs) were detected in comparison with known CpGV isolates. New members of previously defined phylogenetic genome groups A, D and E of CpGV, as well as two novel phylogenetic lines, termed genome group F and G, were identified. Combining SNP frequency distribution with the prevalence of genome group-specific SNPs, revealed that six isolates of CpGV were mixtures of different ratios of at least two genotypes, whereas only one isolate, CpGV-WW, was genetically highly homogeneous. This study significantly extends our current understanding of the genetic diversity of CpGV and opens new lines of application of this virus.


Assuntos
Granulovirus/genética , Polimorfismo de Nucleotídeo Único , Animais , Genoma Viral , Granulovirus/classificação , Filogenia
20.
Viruses ; 11(8)2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390849

RESUMO

Cydia pomonella granulovirus, in particular CpGV-M isolate, is used as a biological control against the codling moth (CM), Cydia pomonella. As a result of intensive control over the years, codling moth populations have developed resistance against this isolate. This resistance is now called type I resistance. Isolates, among them, CpGV-R5, have been found that are able to overcome type I resistance. Both CpGV-M and CpGV-R5 are used in orchards to control the codling moth. High resolution melting (HRM) has been adapted to differentiate between CpGV-M and CpGV-R5 isolates. Specific PCR primers have been designed for the CpGV p38 gene, encompassing the variable region responsible for the ability to overcome resistance. Because each amplicon has a specific melting point, it is possible to identify the CpGV-M and CpGV-R5 genotypes and to quantify their relative proportion. This method has been validated using mixtures of occlusion bodies of each isolate at various proportions. Then, the HRM has been used to estimate the proportion of each genotype in infected larvae or in occlusion bodies (OBs) extracted from dead larvae. This method allows a rapid detection of genotype replication and enables the assessment of either success or failure of the infection in field conditions.


Assuntos
Genótipo , Granulovirus/classificação , Granulovirus/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase em Tempo Real , Animais , Hemolinfa/virologia , Larva/virologia , Técnicas de Amplificação de Ácido Nucleico/normas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Temperatura de Transição , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...